

K2: Architecture that grows: from Petri dish to the building façades Anna Sandak*a,b

a InnoRenewCoE, Izola, Slovenia b Univeristy of Primorska, Koper, Slovenia

*corresponding author: anna.sandak@innorenew.eu

How to cite: Sandak, A., (2025). Architecture that grows: from Petri dish to the building façades. In: Abstracts of *the 3rd International Conference on Moisture in Buildings 2025*, 23-24 Oct 2025, Portugal. UCL Open Environment: UCL Press; 2025. Pp 1-3. DOI: 10.14324/111.444/ucloe.icmb25.k2

Peer review statement

This abstract has undergone single blind review by the ICMB25 Conference Scientific Committee.

Copyright and open access

©2025 The Authors. Creative Commons Attribution Licence (CC BY) 4.0 International licence https://creativecommons.org/licenses/by/4.0/

Open access

This is an open access article distributed under the terms of the Creative Commons Attribution Licence (CC BY) 4.0 https://creativecommons.org/licenses/by/4.0/, which permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited.

About the conference

The following abstract is from the 3rd International Conference on Moisture in Buildings (https://ukcmb.org/icmb25) held in UM Guimarães, Portugal, on the 23-24 Oct 2025. All abstracts published here underwent single blind review by the Conference Scientific Committee.

Abstract

The building sector is a major water consumer across its lifecycle and plays a critical role in accelerating global urbanisation and the growing water crisis. While architectural approaches have traditionally aimed to exclude moisture, emerging strategies reframe water as an active design parameter. This research explores bioinspired and biologically integrated materials that interact dynamically with moisture. Focusing on Engineered Living Materials, it examines fungal biofilms and microbial inks as responsive, regenerative surface systems. This reshapes the perception of microorganisms in the built environment and advances probiotic, circular, and climate-resilient architecture.

Peer-review under the responsibility of the organizing committee of the ICMB25. Keywords: bioinspired material; engineered living materials; resilient architecture

1. Introduction/Background

The built environment represents a significant water consumer across its entire lifecycle, from raw material extraction and manufacturing, through construction, to service life operation and demolition. In parallel, global urbanisation is projected to accelerate rapidly over the next several decades, marking the largest wave of city growth in human history [1]. These overlapping trends situate the building and construction sector as a key actor in the context of the global water crisis. In response to these challenges, this research explores emerging strategies in architecture that reimagine moisture not merely as a threat, but as a design opportunity. The scope encompasses both bioinspired and biologically integrated material systems that offer dynamic modes of interacting with environmental moisture. By transition from passive bioinspired materials to active, living architectural systems, this work outlines a conceptual and technological shift in how the built environment engages with the surrounding

ICMB25

International Conference on Moisture in Buildings (ICMB25), UM Guimarães 23-24 Oct 2025

environment. It contributes to the growing discourse on regenerative materials, circular design, and the integration of life sciences into architecture, with implications for sustainable urban futures.

1.1. Bioinspired approach

Moisture-related considerations in architecture have traditionally focused on protection, insulation, and damage prevention [2]. However, broader environmental pressures have drawn attention to alternative strategies that engage with water in more dynamic and adaptive ways. Biological systems offer a diverse range of passive and active mechanisms for water collection, transport, and retention. Organisms such as the Namib Desert beetle, various cactus species, and certain epiphytic plants have evolved highly efficient strategies for interacting with atmospheric moisture in arid or variable climates. These mechanisms have informed research in bioinspired material science and architectural design, leading to the development of surfaces and structural forms that mimic biological hydrodynamics and microtextures [3]. In architectural applications, such concepts have influenced façade systems, coatings, and structural materials aimed at modulating condensation, enhancing ventilation, or collecting water from fog and rain. These approaches translate biological principles into engineered solutions, often using synthetic or composite materials.

1.2. Beyond biomimicry

While bioinspired systems replicate select functions observed in nature, recent advances in synthetic biology and materials science have enabled a new class of materials that integrate living organisms as active components. Engineered Living Materials (ELMs) incorporate microorganisms or cellular systems into the structure of the material itself, facilitating behaviours such as self-repair, sensing, or interaction with environmental stimuli. ELMs are dynamically researched in various fields, including architecture [4]. The ARCHI-SKIN project, supported by the European Research Council, explores the potential of fungal biofilms used as living coatings for architectural surfaces. These thin biological layers are developed to interface with various substrates in the built environment, with particular emphasis on moisture response, UV protection and environmental adaptation. Initial research investigates the biofilm's properties, adhesion mechanisms, and interactions with environmental factors. This system presents an alternative approach to surface protection and moisture management, shifting from inert barrier coatings to biologically active, self-regenerating skins.

Following the development of fungal biofilms in the ARCHI-SKIN project, the REMEDY project, supported by the European Innovation Council, explores a further step toward biologically integrated architecture through the design of living inks and archibiome tattoos - engineered microbial patterns that enable bespoke, high-resolution decoration and functionalisation of building surfaces. This approach combines advances in microbiology, biomanufacturing, and materials science to create interkingdom microbial inks that function similarly to probiotic treatments. These living inks are designed to generate beneficial surface microbiomes capable of performing environmental functions such as bioremediation, carbon sequestration, and protection against pathogenic organisms. By introducing metabolically active systems into architectural materials, REMEDY positions microbial consortia as both aesthetic and functional agents, contributing to a new concept of probiotic and circular architecture.

1.3. Challenges and perspectives

The integration of biologically active systems into the building envelope introduces a new conceptual framework, one that treats façades not solely as static protectors, but as dynamic interfaces. Fungal coatings and interkingdom microbial living inks exemplify a shift toward material systems capable of adapting their function over time in response to environmental conditions. This line of research contributes to a broader dialogue around regenerative materials, biologically integrated architecture, and climate-resilient design strategies. While implementation remains in early stages, experimental results indicate that fungal biofilms can perform protective and regulatory functions in moisture-sensitive environments, with potential applications across a range of climatic and material contexts. However, such living systems also raise questions related to durability, maintenance, regulatory standards, and integration with existing construction practices.

The convergence of architecture, microbiology, and materials engineering opens new possibilities for building surfaces that respond to, rather than resist, environmental conditions. From bioinspired water collection systems to engineered living coatings and inks, these approaches illustrate an expanding material vocabulary to active, dynamic, and resilient. Within this landscape, living architectural materials such as fungal biofilms or living inks suggest alternative pathways for sustainable and responsive design.

ICMB25

International Conference on Moisture in Buildings (ICMB25), UM Guimarães 23-24 Oct 2025

Acknowledgments

Funded by the European Union (ERC, ARCHI-SKIN, #101044468). Views and opinions expressed are however those of the author only and do not necessarily reflect those of the European Union or the European Research Council. This research has received funding from the European Union's Horizon Europe research and innovation programme under grant agreement No 101185862. Views and opinions expressed are however those of the author only and do not necessarily reflect those of the European Union or European Innovation Council and SMEs Executive Agency (EISMEA). Neither the European Union nor the granting authority can be held responsible for them.

References

- [1] Ritchie, H, Samborska, V., & Roser, M. (2024) Urbanization, retrieved from: https://ourworldindata.org/urbanization.
- [2] Lima, D.F., Duarte, S., Branco, J.M., Nunes, L. Mass Timber Buildings: The associated risks of rainwater exposure during construction in the Portuguese climate, *Journal of Building Engineering*, 98. 111110.
- [3] Sandak, A., & Butina Ogorelec, K. (2023) Bioinspired building materials lessons from nature. Front. Mater. 10:1283163.
- [4] Sandak, A. (2023) Engineered living materials for sustainable and resilient architecture. Nature Review Materials 8, 357-359.

Publisher note

The abstracts published in this Supplement have been typeset from electronic submissions and cameraready copies prepared by the authors. Every effort has been made to reproduce faithfully the abstracts as submitted. These abstracts have been prepared in accordance with the requirements of the International Conference on Moisture in Buildings 2025 and the UK Contre for Moisture in Buildings and have not been subjected to review nor editing by the journal *UCL Open Environment* (published by UCL Press). However, no responsibility is assumed by the organisers or publisher for any injury and/or damage to persons or property as a matter of products liability, negligence or otherwise, or from any use or operation of methods, products, instructions or ideas contained in the material herein.

ICMB25