

Waste biorefinery technologies for accelerating sustainable energy processes

Book of abstracts

WIRE's Final MC Meeting & Working Groups Workshop

Agrocampus

Mont-de-Marsan – France

16-16th September 2025

Waste biorefinery technologies for accelerating sustainable energy processes

Book of abstracts - WIRE's Final MC Meeting & Working Groups Workshop

EDITION

Instituto Politécnico de Portalegre

EDITORS

Roberta Panizio, Catarina Nobre, Diogo Santos and Paulo Brito

ISBN

978-989-8806-85-7

Waste biorefinery technologies for accelerating sustainable energy processes

From proposal to beamtime: a practical guide to open-access synchrotron facilities for bio-based materials research

Wojciech Pajerski¹, Anna Sandak^{1,2}

¹*InnoRenew CoE, Andrej Marušič Institute, University of Primorska, Muzejski trg 2, SI-6000 Koper, Slovenia;*
wojciech.pajerski@innorennew.eu

²*Faculty of Mathematics, Natural Sciences and Information Technologies, University of Primorska, Glagoljaška 8, 6000 Koper, Slovenia*

Abstract: Open-access research infrastructures provide unique opportunities to explore advanced techniques that are not available in many university laboratories. Synchrotron light sources are the most advanced large-scale research infrastructures providing tools that enable a wide range of experiments in fields like chemistry, physics, materials science, biology, and environmental research. Despite their potential, many scientists are still unfamiliar with the application procedures and often may see this process as too competitive or complicated.

This contribution presents a practical step-by-step guide to navigating synchrotron access from an idea to a granted beamtime. Based on first-hand experience with the SOLARIS (Krakow, Poland) and ELETTRA (Trieste, Italy) synchrotrons, it outlines the pathway from idea generation to successful beamtime allocation. As an example, the research on *3D imaging of biofilm–substrate interfaces* performed at the POLYX beamline (SOLARIS) will be presented. The guidance covers key steps, including identifying the appropriate beamline, preparing a competitive proposal, addressing feasibility requirements, performing experiments and handling data afterwards.

This contribution aims to encourage more researchers, especially those working in interdisciplinary fields, and at early stages of their careers, to make use of open-access research infrastructures. By outlining the pathway from proposal to granted beamtime, it supports knowledge exchange and fosters new opportunities for collaboration across disciplines.

Acknowledgments:

This publication is based upon work from COST Action WIRE, CA20127, supported by COST (European Cooperation in Science and Technology).

W.P. acknowledges the support of the Slovenian Research and Innovation Agency (project N2-0410). | This research was funded by the European Union (ERC, ARCHI-SKIN, #101044468). Views and opinions expressed are those of the author(s) only and do not necessarily reflect those of the European Union or the European Research Council. Neither the European Union nor the granting authority can be held responsible for them. | This publication was partially developed under the provision of the Polish Ministry and Higher Education project "Support for research and development with the use of research infrastructure of the National Synchrotron Radiation Centre SOLARIS" under contract no 1/SOL/2021/2. | This work has received support from the European Union under the Horizon Europe programme, project NEPHEWS – Neutrons and Photons Elevating Worldwide Science (No. 101131414). | We acknowledge Elettra Sincrotrone Trieste for providing access to its synchrotron radiation facilities and we thank Marko Prašek for assistance in using beamline SYRMEP.

Waste biorefinery technologies for accelerating sustainable energy processes

Details of presenting author:

Name: Wojciech Pajerski

Affiliation: InnoRenew CoE, Andrej Marušič Institute, University of Primorska

Country: Slovenia

Short biography: Wojciech Pajerski is a postdoctoral researcher at InnoRenew CoE (University of Primorska, Slovenia), specializing in microbiology, materials science, and nanotechnology. His research focuses on bioinspired materials and interfaces between microorganisms and surfaces. He contributes to major European projects on Engineered Living Materials (ELMs), including the ERC-funded ARCHI-SKIN and the EIC Pathfinder REMEDY for eco-friendly architectural solutions. He also leads research supported by a Marie Skłodowska-Curie Seal of Excellence fellowship funded by the Slovenian Research Agency. With patents in bio-based technologies, his research integrates green approaches to reduce environmental impact. His international collaborations and interdisciplinary expertise position him to advance sustainability and green technologies.